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1 Modelling and Forecasting Ecological Dynamics

1.1 Objectives

The latest draft of this slide deck is posted on my website

Table of contents
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library(ggplot2)

1.0.1 Ecological Dynamics

• Competition and cooperation within species

– logistic growth
– Allee effects

• Competition and predation between species

– predator-prey dynamics
– intra-guild predation

• Host-Pathogen dynamics
• Biological Invasions

– forest insect pests
– agricultural pests and pathogens
– animal diseases
– biological control
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1.0.2 Heterogeneity

• variation between individuals

– age
– size
– behaviour

• variation in landscape
• variation over time

1.1 Model Design

1.1.1 Individual-based and Compartmental-based Models

• Compartmental models

– The population is subdivided into compartments reflecting relevant heterogeneities.

– The state-space of the system is the number of individuals in each compartment.

– Individuals in the same compartment are interchangeable.

• Individual-based models:

– The state-space of the model includes the state of each individual in the population.
– Often more natural to develop, since the focus in describing the process at the level

of the individual
– Often more complex than necessary

1.1.2 Discrete-time vs Continuous-time Models

Many organisms have non-overlapping generations. Take, for example, an annual plant that
does not survive through the winter, but produces seeds that germinate and sprout in the
spring.

𝑁𝑡+1 = 𝑁𝑡 × Fecundity × Survival

• Fecundity, or recruitment, is a number larger than one, for example, a ratio of offspring
to adults, or juveniles to parents.

• Survival is a fraction, or a probability a given juvenile survives to the reproductive
stage/age.
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1.1.3 Age Structure

Or organisms may have life cycles that are synchronized, so taking a census of populations by
age at fixed times makes sense.

𝑁0,𝑡+1 = 𝑓1𝑁1𝑡 + 𝑓2𝑁2𝑡 + 𝑓3𝑁3𝑡
𝑁1,𝑡+1 = 𝑠0𝑁0𝑡
𝑁2,𝑡+1 = 𝑠1𝑁1𝑡
𝑁3,𝑡+1 = 𝑠2𝑁2𝑡

1.1.4 Size Structure

Many organisms are better described by size, not age.

𝑁0,𝑡+1 = 𝑓1𝑁1𝑡 + 𝑓2𝑁2𝑡 + 𝑓3𝑁3𝑡 + (1 − 𝑝0)𝑁0𝑡
𝑁1,𝑡+1 = (1 − 𝑝1)𝑁1𝑡 + 𝑝0𝑠0𝑁0𝑡
𝑁2,𝑡+1 = (1 − 𝑝2)𝑁2𝑡 + 𝑝1𝑠1𝑁1𝑡
𝑁3,𝑡+1 = (1 − 𝑝3)𝑁3𝑡 + 𝑝2𝑠2𝑁2𝑡

1.1.5 Stochastic vs Deterministic Modelling

Andersson and Britton (2012) raise several good arguments for using Stochastic models over
deterministic models in Biology. Their interest is specific Epidemic Models, but the points
pertain to Biology more generally.

1. The stochastic framework is the most natural way to describe most biological pro-
cesses

2. Many phenomena of interest are inherently stochastic.

3. Quantifying our uncertainty in model elements, processes, and outcomes is necessary
and inherently probabilistic.

4. Any forecast or assessment of the model is of little value without a corresponding assess-
ment of its uncertainty.
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1.1.6 Quantifying Uncertainty

An essential step in designing models is a quantification of uncertainty.

To be useful, a prediction must be accompanied by some measure of its accuracy and reliabil-
ity.

Sources of uncertainty:

• uncertainty in model design, including

– our understanding of the process being modelled,
– our choice of model,

∗ parameter selection, and
∗ inherent variability in the process being modelled;

• uncertainty in observations,

– measurement error.

1.1.7 Modelling Theory vs Modelling Data

• Modelling Theory

– model hypothesized processes
– compare predictions and observations
– how well does theory explain observation?
– robust, extrapolate to other scales, regions, …

• Modelling Data

– descriptive
– interpolation
– near-term forecasting
– no inference can be made on underlying processes

1.1.8 Incorporating Uncertainty and Variability

𝑁0,𝑡+1 = 𝑓1𝑁1𝑡 + 𝑓2𝑁2𝑡 + 𝑓3𝑁3𝑡 + (1 − 𝑝0)𝑁0𝑡
𝑁1,𝑡+1 = (1 − 𝑝1)𝑁1𝑡 + 𝑠0𝑝0𝑁0𝑡
𝑁2,𝑡+1 = (1 − 𝑝2)𝑁2𝑡 + 𝑠1𝑝1𝑁1𝑡
𝑁3,𝑡+1 = (1 − 𝑝3)𝑁3𝑡 + 𝑠2𝑝2𝑁2𝑡

Process Variability: 𝑓𝑖, 𝑝𝑖, 𝑠𝑖 are nonlinear operators returning random variables.
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Environmental or Temporal Variability: 𝑓𝑖, 𝑝𝑖, 𝑠𝑖 are deterministic, but parameters are ran-
dom variables.

Observation Uncertainty: not propagated through time

𝑌𝑖𝑡 = 𝑁𝑖𝑡 + 𝜖𝑖𝑡

1.2 Models and Forecasts

1.2.1 What is a Forecast?

The process of predicting the state of ecosystems, ecosystem services, and natural capital,
with fully specified uncertainties, and is contingent on explicit scenarios for climate,
land use, human population, technologies, and economic activity. Forecast state at future time
from state at current time given assumptions about parameters. – (Clarke et al, 2001)

1.2.2 Forecasts for Policies, Strategies, and Decisions

• Serviceable Truths
• Working Hypotheses
• Actionable Intel

All models are wrong, but some models suggest serviceable truths.

1.2.3 Forecasting is part of the Scientific Method

• Observe
• Formulate Research Question
• Formulate Model and Hypothesis
• Predict/Forecast
• Gather data and test model/hypothesis
• Report and Repeat

2 Growth of a single population

Outline

Table of contents
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2.1 The Process-based ODE framework

2.1.1 The general process-based framework

𝑑𝑁
𝑑𝑡 = 𝐵(𝑡, 𝑁) − 𝐷(𝑡, 𝑁)

• 𝑁(𝑡) is the population at time 𝑡
• continuous state: 𝑁 ∈ ℝ

– interpret 𝑁 as a density or expected population

• continuous time: 𝑡 ∈ ℝ
• 𝐵(𝑡, 𝑁) is the birth rate at time 𝑡 and population 𝑁
• 𝐷(𝑡, 𝑁) is the death rate at time 𝑡 and population 𝑁

Objective: study solutions of the ODE and their dependence on initial conditions and param-
eters.

2.1.2 Exponential Growth

Suppose the birth and death rates are both independent of time and proportional to the
population size.

𝑑𝑁
𝑑𝑡 = 𝑏𝑁 − 𝑑𝑁

with 𝑁(0) = 𝑁0.

• The constants 𝑏 and 𝑑 are referred to as the per-capita birth and death rates.

• The solution grows exponentially at rate 𝑏 − 𝑑 if 𝑏 > 𝑑, or decays if 𝑏 < 𝑑.

2.2 Logistic Growth

2.2.1 Density Dependent Birth and Death Rates

In a classic series of experiments, Gause collected counts of P. Aurelia over several weeks
(Gause 2019; De Vries et al. 2006)
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aurelia = data.frame(
day = c(0,2:25),
density = c(2,14,34,56,94,189,266,330,416,507,580,610,513,593,557,560,522,565,517,500,585,500,495,525,510)
)

ggplot(aurelia,aes(x=day,y=density)) + geom_point()
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The simplest explanation for the levelling-off of the counts is that competition or interference
between individuals results in a reduction in fecundity and/or survival as density increases.

2.2.2 Logistic Growth

𝑑𝑁
𝑑𝑡 = 𝑏𝑁 − (𝑑 + 𝑎𝑁)𝑁

b = 1
d = .25
K = 60
a = (b-d)/K
pcBirth = function(N) rep(b,length=length(N))
pcDeath = function(N) d + a*N
N = seq(0,100,length=100)
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plot(N,pcBirth(N),type='l',col='green',ylab = "per capita rates", xlab = "Population",ylim = c(0,1.5))
lines(N,pcDeath(N),type='l',col='red')
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2.3 Allee Effects

2.3.1 Allee Effects

𝑑𝑁
𝑑𝑡 = 𝑏𝑁2

𝑐 + 𝑁 − (𝑑 + 𝑎𝑁)𝑁

b = 1.5
d = .25
K = 60
Na = 10
a = 0.012
c = 20
pcBirth = function(N) b*N/(c+N)
pcDeath = function(N) d + a*N
N = seq(0,100,length=100)
plot(NULL,

ylab = "per capita rates",
xlab = "Population",
xlim = c(0,100),
ylim = c(0,1.5),
xaxt="n",yaxt="n",frame.plot=FALSE
)

axis(1,pos=0)
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axis(2,pos=0)
lines(N,pcDeath(N),type='l',col='red')
lines(N,pcBirth(N),type='l',col='green')
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3 Interactions between species

Outline

Table of contents
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3.1 Predator-Prey Dynamics

3.1.0.1 Volterra’s question

Alfred Lotka (PNAS 1920 6(7):410-415) and Vito Volterra (1926) independently proposed a
simple predator-prey model. Lotka was motivated by previous work on rhythmic chemical
reactions and oscillations in populations. Volterra was motivated by a question posed by
Umberto D’Ancona, a marine biologist who later became Volterra’s son-in-law. D’Ancona
was curious if Volterra could use mathematical modelling to explain why the proportion of
predatory fish in catches increased when fishing effort decreased during the First World War,
and then decreased again when fishing resumed.

3.1.1 The Lotka-Volterra Model {.t}

• The classic Lotka-Volterra model is based on a few simple assumptions.

1. Prey grow exponentially at per capita rate 𝑟 in absence of the predator.
2. Prey are killed at a constant per capita rate 𝑎 per predator.
3. Each prey killed due to predation gives rise to 𝑐 predators.
4. Predator death is at a constant per capita rate 𝑚.

• The original model consists of a pair of differential equations.

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 − 𝑎𝑁𝑃,
𝑑𝑃
𝑑𝑡 = 𝑐𝑎𝑁𝑃 − 𝑚𝑃.

• Here 𝑁 and 𝑃 are the prey and predator densities, respectively.

3.1.2 Lotka-Volterra Analysis

𝑑𝑃
𝑑𝑁 = (𝑐𝑎𝑁 − 𝑚)𝑃

(𝑟 − 𝑎𝑃)𝑁

Separating variables and integrating shows the solutions are level curves of

Ψ(𝑁, 𝑃) = 𝑐𝑎
𝑟 𝑁 − 𝑚

𝑟 log (𝑐𝑎
𝑟 𝑁) + 𝑎

𝑟 𝑃 − log (𝑎
𝑟 𝑃)

12



3.1.3 The Volterra Predator Prey Model

In 1931, Volterra published an analysis of a predator-prey model with a prey carrying capac-
ity:

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 (1 − 𝑁

𝐾 ) − 𝑎𝑁𝑃, (1)

𝑑𝑃
𝑑𝑡 = 𝑐𝑎𝑁𝑃 − 𝑚𝑃. (2)

These equations represent a similar vector field to the original Lotka-Volterra model. The 𝑁 -
nullcline is no longer horizontal, but has the equation 𝑎𝑃 = 𝑟−𝑟𝑁/𝐾. The interior equilibrium
is at 𝑁 = 𝑚/𝑎, 𝑃 = 𝑟

𝑎 (1 − 𝑚
𝑎𝐾 ), which is positive only if 𝐾 > 𝑚

𝑎 .

3.1.4 The Rosenzweig-MacArthur Model

Rosenweig and MacArthur (1963) are credited with the addition of a hyperbolic functional
response to the classic predator-prey model.

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 (1 − 𝑁

𝐾 ) − 𝑎𝑁𝑃
1 + 𝑏𝑁 ,

𝑑𝑃
𝑑𝑡 = 𝑐 𝑎𝑁𝑃

1 + 𝑏𝑁 − 𝑚𝑃.

3.1.5 The Functional Response

Turchin (2003) provides an excellent discussion of the various responses of predators to changes
in prey populations. Consider a general predation model of the form

𝑑𝑁
𝑑𝑡 = 𝑁𝐹(𝑁) − 𝐻(𝑁, 𝑃 )𝑃 ,
𝑑𝑃
𝑑𝑡 = 𝐺(𝑁, 𝑃)𝑃 − 𝑚𝑃.

The three functions are usually referred to as

• the net per capita growth rate 𝐹 , which is assumed independent of predation,
• the functional response 𝐻, which is the rate individual predators kill prey, and
• the numerical response 𝐺, which models the dependence of the per capita predator

growth rate on population densities.

13



3.1.6 Holling’s Functional Response Types

Holling (1959) introduced a simple classification of functional responses of predators into type
I, II, or III. Mathematically, type I and II are similar, and represent a saturating response.

Prey density

re
sp
on

se

type I

typ
e I

I

ty
pe

III

Figure 1: Holling’s Functional Response types

3.2 Competition

3.2.1 The Classic Volterra Competition Model

𝑑𝑁1
𝑑𝑡 = 𝑁1 (1 − 𝑎11𝑁1 − 𝑎12𝑁2) ,

𝑑𝑁2
𝑑𝑡 = 𝑁2 (1 − 𝑎21𝑁1 − 𝑎22𝑁2) .

Two species in competition:

• 𝑎𝑖𝑖 measures within-species competition, 𝑖 ∈ {1, 2}.
• 𝑎𝑖𝑗 measures between-species competition, 𝑖 ∈ {1, 2}, 𝑗 ≠ 𝑖.

3.3 Virus Dynamics

3.3.1 Classic In-host infection model

susceptible host cell: 𝑑𝑇
𝑑𝑡 = 𝜆 − 𝜇𝑇 − 𝛽𝑇 𝑉

infected host cell: 𝑑𝐼
𝑑𝑡 = 𝛽𝑇 𝑉 − 𝛿𝐼

free virus: 𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − 𝑐𝑉 − 𝛽𝑣𝑇 𝑉

14



. . .

Infection-free equilbrium: (𝑇𝑜 = 𝜆
𝜇 , 0, 0)

. . .

𝑑
𝑑𝑡

⎛⎜
⎝

𝑇
𝐼
𝑉

⎞⎟
⎠

= ⎛⎜
⎝

−𝜇 0 −𝛽𝑇𝑜
0 −𝛿 𝛽𝑇𝑜
0 𝑝 −(𝑐 + 𝛽𝑣𝑇𝑜)

⎞⎟
⎠

⎛⎜
⎝

𝑇 − 𝑇𝑜
𝐼
𝑉

⎞⎟
⎠

. . .

ℛ0 = 𝑝𝛽𝑇𝑜
𝛿(𝑐 + 𝛽𝑣𝑇𝑜)

3.3.2 Classic In-host infection model

• The Jacobian matrix has two diagonal blocks.
• The upper left block relates to the invariant infection-free axis, (𝑇 , 0, 0).
• The lower right block relates to the invasion of the infection-free equilibrium by the virus.

(−𝛿 𝛽𝑇𝑜
𝑝 −(𝑐 + 𝛽𝑣𝑇𝑜)) = (0 0

𝑝 0) − (𝛿 −𝛽𝑇𝑜
0 𝑐 + 𝛽𝑣𝑇𝑜

)

The basic reproduction number of the virus is the leading eigenvalue of

(0 0
𝑝 0) (𝛿 −𝛽𝑇𝑜

0 𝑐 + 𝛽𝑣𝑇𝑜
)

−1

ℛ0 = 𝑝𝛽𝑇𝑜
𝛿(𝑐 + 𝛽𝑣𝑇𝑜)

3.3.3 Virus Dynamics with a Single Eclipse Stage

susceptible host cell: 𝑑𝑇
𝑑𝑡 = 𝜆 − 𝜇𝑇 − 𝛽𝑇 𝑉

eclipse-stage: 𝑑𝐸
𝑑𝑡 = 𝛽𝑇 𝑉 − 𝛼𝐸

infectious-stage: 𝑑𝐼
𝑑𝑡 = 𝛼𝐸 − 𝛿𝐼

free virus: 𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − 𝑐𝑉 − 𝛽𝑣𝑇 𝑉
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3.3.4 Virus Dynamics with Two Eclipse Stages

susceptible host cell: 𝑑𝑇
𝑑𝑡 = 𝜆 − 𝜇𝑇 − 𝛽𝑇 𝑉

eclipse-stage-1: 𝑑𝐸1
𝑑𝑡 = 𝛽𝑇 𝑉 − 𝛼𝐸1

eclipse-stage-2: 𝑑𝐸2
𝑑𝑡 = 𝛼𝐸1 − 𝛼2

infectious-stage: 𝑑𝐼
𝑑𝑡 = 𝛼𝐸2 − 𝛿𝐼

free virus: 𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − 𝑐𝑉 − 𝛽𝑣𝑇 𝑉

3.3.5 Virus Dynamics with Three Eclipse Stages

susceptible host cell: 𝑑𝑇
𝑑𝑡 = 𝜆 − 𝜇𝑇 − 𝛽𝑇 𝑉

eclipse-stage-1: 𝑑𝐸1
𝑑𝑡 = 𝛽𝑇 𝑉 − 𝛼𝐸1

eclipse-stage-2: 𝑑𝐸2
𝑑𝑡 = 𝛼𝐸1 − 𝛼2

eclipse-stage-3: 𝑑𝐸3
𝑑𝑡 = 𝛼𝐸2 − 𝛼3

infectious-stage: 𝑑𝐼
𝑑𝑡 = 𝛼𝐸3 − 𝛿𝐼

free virus: 𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − 𝑐𝑉 − 𝛽𝑣𝑇 𝑉
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3.3.6 Virus Dynamics with Four Eclipse Stages

susceptible host cell: 𝑑𝑇
𝑑𝑡 = 𝜆 − 𝜇𝑇 − 𝛽𝑇 𝑉

eclipse-stage-1: 𝑑𝐸1
𝑑𝑡 = 𝛽𝑇 𝑉 − 𝛼𝐸1

eclipse-stage-2: 𝑑𝐸2
𝑑𝑡 = 𝛼𝐸1 − 𝛼2

eclipse-stage-3: 𝑑𝐸3
𝑑𝑡 = 𝛼𝐸2 − 𝛼3

eclipse-stage-4: 𝑑𝐸4
𝑑𝑡 = 𝛼𝐸3 − 𝛼4

infectious-stage: 𝑑𝐼
𝑑𝑡 = 𝛼𝐸4 − 𝛿𝐼

free virus: 𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − 𝑐𝑉 − 𝛽𝑣𝑇 𝑉

3.3.7 Virus Dynamics with a Distributed Eclipse Stage

A common approach to modelling eclipse phases and staged progression is to use a linear chain
of exponentially distributed stages. These appear in simple ode models as

𝑇 ′ = 𝜆 − 𝜇𝑇 − 𝛽𝑇 𝑉
𝐼′ = 𝐴𝐼 + 𝛽𝑇 𝑉
𝑉 ′ = 𝑃𝐼 − 𝑐𝑉 − 𝛽𝑣𝑇 𝑉

where 𝐼 , 𝑇 and 𝑉 are densities of infected cells, susceptible target cells and virus. With the
simple one-stage model, 𝐼 is a scalar. In the 𝑛-stage model, 𝐼 is a vector of length 𝑛, 𝐴 is an
𝑛 × 𝑛 progression matrix and 𝑝 is a vector of budding rates.

Shiny demo

3.3.8 Classic Immune Model: Cellular

susceptible host cell: 𝑑𝑇
𝑑𝑡 = 𝜆 − 𝜇𝑇 − 𝛽𝑇 𝑉

infected host cell: 𝑑𝐼
𝑑𝑡 = 𝛽𝑇 𝑉 − 𝛿𝐼 − 𝑏𝐼𝐵

free virus: 𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − 𝑐𝑉

immune cells: 𝑑𝐵
𝑑𝑡 = 𝑎𝐼𝐵 − 𝑚𝐵

(See Ciupe and Heffernan 2017; Murase, Sasaki, and Kajiwara 2005)
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3.3.9 Classic Immune Model: Humoral

susceptible host cell: 𝑑𝑇
𝑑𝑡 = 𝜆 − 𝜇𝑇 − 𝛽𝑇 𝑉

infected host cell: 𝑑𝐼
𝑑𝑡 = 𝛽𝑇 𝑉 − 𝛿𝐼

free virus: 𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − 𝑐𝑉 − 𝛽𝑣𝑇 𝑉 − 𝑏𝑉 𝐵

immune cells: 𝑑𝐵
𝑑𝑡 = 𝑎𝑉 𝐵 − 𝑚𝐵

. . .

Infection-free equilibrium (𝑇𝑜 = 𝜆/𝜇, 0, 0, 0).

⎛⎜⎜⎜⎜
⎝

−𝜇 0 −𝛽𝑇𝑜 0
0 −𝛿 𝛽𝑇𝑜 0
0 𝑝 −𝑐 − 𝛽𝑣𝑇𝑜 0
0 0 0 −𝑚

⎞⎟⎟⎟⎟
⎠

3.3.10 Classic Immune Model: Humoral – Immune Response

susceptible host cell: 𝑑𝑇
𝑑𝑡 = 𝜆 − 𝜇𝑇 − 𝛽𝑇 𝑉

infected host cell: 𝑑𝐼
𝑑𝑡 = 𝛽𝑇 𝑉 − 𝛿𝐼

free virus: 𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − 𝑐𝑉 − 𝛽𝑣𝑇 𝑉 − 𝑏𝑉 𝐵

immune cells: 𝑑𝐵
𝑑𝑡 = 𝑎𝑉 𝐵 − 𝑚𝐵

Immune-free equilibrium (𝑇𝑖, 𝐼𝑖, 𝑉𝑖, 0).

⎛⎜⎜⎜⎜
⎝

∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ −𝑏𝑉𝑖
0 0 0 𝑎𝑉𝑖 − 𝑚

⎞⎟⎟⎟⎟
⎠
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3.4 Intra-Guild Predation

3.4.1 A Simple Intraguild Predation Model

IG Predator, z

IG Prey, y

Resource, x

̇𝑥 = 𝑥(1 − 𝑥) − 𝑥𝑦 − 𝛼2𝑥𝑧,

̇𝑦 = 𝜎1𝑥𝑦 − 𝑦𝑧
1 + 𝛽3𝑦 − 𝜇1𝑦,

̇𝑧 = 𝜎2𝛼2𝑥𝑧
1 + 𝛽2𝑥 + 𝜎3𝑦𝑧

1 + 𝛽3𝑦 − 𝜇2𝑧.

• Type II interaction between IG prey and IG predator (𝛽3)
• Saturating numerical response of IG predator to resource (𝛼2, 𝛽2)

(See Hu (2014), Shu et al. (2015))
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3.4.2 Intraguild Predation: bifurcation diagram
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3.4.3 The Stable Torus

images/igptorus.mp4
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